Adaptive performance model for dynamic scaling Apache Spark Streaming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Stream Analytics in Apache Flink and Apache Spark Streaming

Approximate computing aims for efficient execution of workflows where an approximate output is sufficient instead of the exact output. The idea behind approximate computing is to compute over a representative sample instead of the entire input dataset. Thus, approximate computing — based on the chosen sample size — can make a systematic trade-off between the output accuracy and computation effi...

متن کامل

Modeling and Simulating Apache Spark Streaming Applications

Stream processing systems are used to analyze big data streams with low latency. The performance in terms of response time and throughput is crucial to ensure all arriving data are processed in time. This depends on various factors such as the complexity of used algorithms and configurations of such distributed systems and applications. To ensure a desired system behavior, performance evaluatio...

متن کامل

Scaling Evolutionary Programming with the Use of Apache Spark

Organizations across the globe gather more and more data, encouraged by easyto-use and cheap cloud storage services. Large datasets require new approaches to analysis and processing, which include methods based on machine learning. In particular, symbolic regression can provide many useful insights. Unfortunately, due to high resource requirements, use of this method for large-scale dataset ana...

متن کامل

Performance Comparison of Apache Spark and Tez for Entity Resolution

Entity Resolution is among the hottest topics in the field of Big data. It finds duplicates in datasets, which actually belong to same entity in the real world. Algorithms that perform Entity Resolution are computation intensive and consume a lot of time especially for large datasets. A lot of research has been conducted for improving Entity Resolution solutions. A number of algorithms are deve...

متن کامل

Static and Dynamic Big Data Partitioning on Apache Spark

Many of today’s large datasets are organized as a graph. Due to their size it is often infeasible to process these graphs using a single machine. Therefore, many software frameworks and tools have been proposed to process graph on top of distributed infrastructures. This software is often bundled with generic data decomposition strategies that are not optimised for specific algorithms. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2018

ISSN: 1877-0509

DOI: 10.1016/j.procs.2018.08.243